广告赞助商: 睿控自动化科技有限公司专业从事研发,生产,销售电气火灾探测器、智能数显电测表、多功能电力监测仪、可编程智能仪表。。。
注册会员 | 市场助手 | 广告交换
 
销售中心 热卖产品 公司大全 产品库 信息中心 联系我们 供求信息
高级搜索 所有分类 推荐产品 [ 订购热线:0577-62767812 咨询:Em39_com@yahoo.com.cn ]
 
 行业资讯 【 字体: 】【进入打印页】【关闭
Boost电路的一种软开关实现方法

媒体合作
中国电气市场采购网
专业供应高低压电气产品
www.em39.com
中国电机维修网
---电机维修技术中心
www.djwxw.com
上海来宏电气有限公司
电话:13588910177
电话:0577-62737106
地址:上海市奉贤区远东路828号2幢
专业生产LQA、LHQA、LHQB不锈钢扎带工具,并对外提供OEM加工。
温州拓展培训网
温州拓展培训网
www.wztzh.com
淘宝网综合频道

淘宝网综合频道


欢迎合作
邮箱:laihongcn@163.com
我们的资料:
中国电气市场采购网
专业供应高低压电气产品
http://www.em39.com

 
发布日期:[2009-3-14]    共阅[2925]次 中国电气市场采购网[EM39.com] {鼠标双击自动滚屏}
      摘要:提出了一种Boost电路软开关实现方法,即同步整流加上电感电流反向.根据两个开关管实现软开关的条件不同,提出了强管和弱管的概念,给出了满足软开关条件的设计方法.一个24V输入,40V/2.5A输出,开关频率为200kHz的同步Boost变换器样机进一步验证了上述方法的正确性,其满载效率达到了96.9%
关键词:升压电路;软开关;同步整流
引言
轻小化是目前电源产品追求的目标.而提高开关频率可以减小电感,电容等元件的体积.但是,开关频率提高的瓶颈是器件的开关损耗,于是软开关技术就应运而生.一般,要实现比较理想的软开关效果,都需要有一个或一个以上的辅助开关为主开关创造软开关的条件,同时希望辅助开关本身也能实现软开关.
Boost电路作为一种最基本的DC/DC拓扑而广泛应用于各种电源产品中.由于Boost电路只包含一个开关,所以,要实现软开关往往要附加很多有源或无源的额外电路,增加了变换器的成本,降低了变换器的可靠性.
Boost电路除了有一个开关管外还有一个二极管.在较低压输出的场合,本身就希望用一个MOSFET来替换二极管(同步整流),从而获得比较高的效率.如果能利用这个同步开关作为主开关的辅助管,来创造软开关条件,同时本身又能实现软开关,那将是一个比较好的方案.
本文提出了一种Boost电路实现软开关的方法.该方案适用于输出电压较低的场合.
1 工作原理
图1所示的是具有两个开关管的同步Boost电路.其两个开关互补导通,中间有一定的死区防止共态导通,如图2所示.通常设计中电感上的电流为一个方向,如图2第5个波形所示.考虑到开关的结电容以及死区时间,一个周期可以分为5个阶段,各个阶段的等效电路如图3所示.下面简单描述了电感电流不改变方向的同步Boost电路的工作原理.在这种设计下,S2可以实现软开关,但是S1只能工作在硬开关状态.
1)阶段1〔t0~t1〕该阶段,S1导通,L上承受输入电压,L上的电流线性增加.在t1时刻,S1关断,该阶段结束.
2)阶段2〔t1~t2〕S1关断后,电感电流对S1的结电容进行充电,使S2的结电容进行放电,S2的漏源电压可以近似认为线性下降,直到下降到零,该阶段结束.
3)阶段3〔t2~t3〕当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝在零电压状态,也就是为S2的零电压导通创造了条件.
4)阶段4〔t3~t4〕S2的门极变为高电平,S2零电压开通.电感L上的电流又流过S2.L上承受输出电压和输入电压之差,电流线性减小,直到S2关断,该阶段结束.
5)阶段5〔t4~t5〕此时电感L上的电流方向仍然为正,所以该电流只能转移到S2的寄生二极管上,而无法对S1的结电容进行放电.因此,S1是工作在硬开关状态的.
接着S1导通,进入下一个周期.从以上的分析可以看到,S2实现了软开关,但是S1并没有实现软开关.其原因是S2关断后,电感上的电流方向是正的,无法使S1的结电容进行放电.但是,如果将L设计得足够小,让电感电流在S2关断时为负的,如图4所示,就可以对S1的结电容进行放电而实现S1的软开关了.
在这种情况下,一个周期可以分为6个阶段,各个阶段的等效电路如图5所示.其工作原理描述如下.
1)阶段1〔t0~t1〕该阶段,S1导通,L上承受输入电压,L上的电流正向线性增加,从负值变为正值.在t1时刻,S1关断,该阶段结束.
2)阶段2〔t1~t2〕S1关断后,电感电流为正,对S1的结电容进行充电,使S2的结电容放电,S2的漏源电压可以近似认为线性下降.直到S2的漏源电压下降到零,该阶段结束.
3)阶段3〔t2~t3〕当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝在零电压状态,也就是为S2的零电压导通创造了条件.
4)阶段4〔t3~t4〕S2的门极变为高电平,S2零电压开通.电感L上的电流又流过S2.L上承受输出电压和输入电压之差,电流线性 小,直到变为负值,然后S2关断,该阶段结束.
5)阶段5〔t4~t5〕此时电感L上的电流方向为负,正好可以使S1的结电容进行放电,对S2的结电容进行充电.S1的漏源电压可以近似认为线性下降.直到S1的漏源电压下降到零,该阶段结束.
6)阶段6〔t5~t6〕当S1的漏源电压下降到零之后,S1的寄生二极管就导通,将S1的漏源电压箝在零电压状态,也就是为S1的零电压导通创造了条件.
接着S1在零电压条件下导通,进入下一个周期.可以看到,在这种方案下,两个开关S1和S2都可以实现软开关.
2 软开关的参数设计
以上用同步整流加电感电流反向的办法来实现Boost电路的软开关,其中两个开关实现软开关的难易程度并不相同.电感电流的峰峰值可以表示为
ΔI=(VinDT)/L (1)
式中:D为占空比;
T为开关周期.
所以,电感上电流的最大值和最小值可以表示为
Imax=ΔI/2+Io (2)
Imin=ΔI/2-Io (3)
式中:Io为输出电流.
将式(1)代入式(2)和式(3)可得
Imax=(VinDT)/2L+Io (4)
Imin=(VinDT)/2L-Io (5)
从上面的原理分析中可以看到S1的软开关条件是由Imin对S2的结电容充电,使S1的结电容放电实现的;而S2的软开关条件是由Imax对S1的结电容充电,使S2的结电容放电实现的.另外,通常满载情况下|Imax||Imin|.所以,S1和S2的软开关实现难易程度也不同,S1要比S2难得多.这里将S1称为弱管,S2称为强管.
强管S2的软开关极限条件为L和S1的结电容C1和S2的结电容C2谐振,能让C2上电压谐振到零的条件,可表示为式(6).
将式(4)代入式(6)可得
实际上,式(7)非常容易满足,而死区时间也不可能非常大,因此,可以近似认为在死区时间内电感L上的电流保持不变,即为一个恒流源在对S2的结电容充电,使S1的结电容放电.在这种情况下的ZVS条件称为宽裕条件,表达式为式(8).
(C2+C1)Vo≤(VinDT/2L+Io)tdead2 (8)
式中:tdead2为S2开通前的死区时间.
同理,弱管S1的软开关宽裕条件为
(C1+C2)Vo≤(VinDT/2L-Io)tdead1 (9)
式中:tdead1为S1开通前的死区时间.
在实际电路的设计中,强管的软开关条件非常容易实现,所以,关键是设计弱管的软开关条件.首先确定可以承受的最大死区时间,然后根据式(9)推算出电感量L.因为,在能实现软开关的前提下,L不宜太小,以免造成开关管上过大的电流有效值,从而使得开关的导通损耗过大.
3 实验结果
一个开关频率为200kHz,功率为100W的电感电流反向的同步Boost变换器进一步验证了上述软开关实现方法的正确性.
该变换器的规格和主要参数如下:
输入电压Vin24V
输出电压Vo40V
输出电流Io0~2.5A
工作频率f200kHz
主开关S1及S2IRFZ44
电感L4.5μH
图6(a),图6(b)及图6(c)是满载(2.5A)时的实验波形.从图6(a)可以看到电感L上的电流在DT或(1-D)T时段里都会反向,也就是创造了S1软开关的条件.从图6(b)及图6(c)可以看到两个开关S1和S2都实现了ZVS.但是从电压vds的下降斜率来看S1比S2的ZVS条件要差,这就是强管和弱管的差异.
图7给出了该变换器在不同负载电流下的转换效率.最高效率达到了97.1%,满载效率为96.9%.
4 结语
本文提出了一种Boost电路软开关实现策略:同步整流加电感电流反向.在该方案下,两个开关管根据软开关条件的不同,分为强管和弱管.设计中要根据弱管的临界软开关条件来决定电感L的大小.因为实现了软开关,开关频率可以设计得比较高.电感量可以设计得很小,所需的电感体积也可以比较小(通常可以用I型磁芯).因此,这种方案适用于高功率密度,较低输出电压的场合.
(综合电子论坛)
所载文章只为传递更多信息,并不代表本站观点或证实其描述。信息仅供参考,转载请注明出处!




上一篇:高压开关设备专业词汇解析
本 篇:Boost电路的一种软开关实现方法─电气采购网(电器采购网)行业新闻中心
下一篇:高压开关设备专业词汇解析
 
【 字体: 】【进入打印页】【顶部】【关闭
   →热门新闻↑
2011年我国清洁能源产业发展趋势
中国电力资产重组并购趋势分析
2013年经济蓝皮书发布会实录
内蒙古电力110kV输变电工程设计
工程机械行业发展状况分析之铁路困局
港政府拟斥资2.4亿港元购置节电设
什么是智能电网
我国纺织机械出口的趋势分析
选择所属类目:
 最新供应信息>>更多  最新求购信息>>更多
【卖】
【卖】
【卖】
【卖】
【卖】
【买】
【买】
【买】
【买】
【买】
关于我们 | 信息发布声明 | 广告服务 | 网站建设 | 合作信箱 | 企业招聘 | 违法信息举报 | 联系我们 | 网站地图 | 友情链接

版权所有 © 电气市场网 未经授权禁止转载、摘编、复制或建立镜像. 如有违反,追究法律责任.
电话:18968909931 传真:0577-62711032 邮箱:em39.com@gmail.com
相关营业执照浙ICP备05082769号
最佳分辨率:1280×800 Internet Explorer 6.0以上